

The Spoofax Language Workbench

Spoofax is a platform for developing textual (domain-specific) programming languages.
The platform provides the following ingredients:

	Meta-languages for high-level declarative language definition

	An interactive environment for developing languages using these meta-languages

	Code generators that produces parsers, type checkers, compilers, interpreters, and other tools from language definitions

	Generation of full-featured Eclipse editor plugins from language definitions

	Generation of full-featured IntelliJ editor plugins from language definitions (experimental)

	An API for programmatically combining the components of a language implementation

With Spoofax you can focus on the essence of language definition and ignore irrelevant implementation details.

Developing Software Languages

Spoofax supports the development of textual languages, but does not otherwise restrict what kind of language you develop. Spoofax has been used to develop the following kinds of languages:

	Programming languages

	Languages for programming computers. Implement an existing programming language to create an IDE and other tools for it, or design a new programming language.

	Domain-specific languages

	Languages that capture the understanding of a domain with linguistic abstractions. Design a DSL for your domain with a compiler that generates code that would be tedious and error prone to produce manually.

	Scripting languages

	Languages with a special run-time environment and interpreter

	Work-flow languages

	Languages for scheduling actions such as building the components of a software system

	Configuration languages

	Languages for configuring software and other systems

	Data description languages

	Languages for formatting data

	Data modeling languages

	Languages for describing data schemas

	Web programming languages

	Languages for programming web clients or servers

Creating Full-Featured Editors

From a language definition Spoofax generates full-featured Eclipse and IntelliJ editor plugins, as well as a command-line interface. Generated editors support the following features:

	Syntactic editor services

	Syntax highlighting

	Syntax checking

	Parse error recovery

	Outline view

	Syntactic code completion

	Formatting

	Semantic editor services

	Name checking

	Type checking

	Inline error markers

	Reference resolution: navigate to declaration

	Builders: custom operations for invoking

	Code generation

	Interpreter

	Transformations

	Refactorings

Declare Your Language

We design Spoofax according to the following guiding principles:

	Separation of concerns

	Separate specification from implementation. Separate language-specific aspects from language-independent aspects. Separate definition of separate aspects (e.g. separate syntax definition and static semantics definition)

	Single source

	Instead of repeating a language aspect in many different implementation components, we aim to generate many different artifacts from a single source.

	Declarative language definition

	Language designers should focus on what distinguishes their language and should not be distracted by writing boilerplate for recurring implementation details. Rather than confronting each language designer with these implementation details, we factor them out into language-independent abstractions and corresponding implementations.

Following these guidelines, Spoofax provides the following high-level, declarative meta-languages:

	SDF3

	The SDF3 Syntax Definition Formalism allows language designers to focus on the structure of programs rather than on debugging parser implementations by means of the following features: support for the full class of context-free grammars by means of generalized LR parsing, integration of lexical and context-free syntax through scannerless parsing, safe and complete disambiguation using priority and associativity declarations, an automatic mapping from parse trees to abstract syntax trees through integrated constructor declarations, automatic generation of formatters based on template productions, syntactic completion proposals in editors.

	NaBL2

	The NaBL2 ‘Name Binding Language’ supports the definition of the static semantics of languages including name binding and type analysis. NaBL2 rules define a mapping from abstract syntax trees to name and type constraints. The generated constraints are solved by a language-independent solver and produce error messages to display in an editor and a symbol table for the analyzed abstract syntax tree for use in further processing. Name analysis in NaBL2 is based on scope graphs, a language-independent model for name resolution and scoping.

	FlowSpec

	The FlowSpec Data-Flow Analysis Specification Language supports the specification of control-flow and intra-procedural data-flow analysis. FlowSpec control-flow rules map abstract syntax trees to control-flow edges. Data-flow properties in FlowSpec represent the results of different data-flow analyses, and the analyses are specified through property rules per type of control-flow node. FlowSpec depends on the use of NaBL2 for name binding.

	Stratego

	The Stratego transformation language supports the definition of transformations of abstract syntax terms using rewrite rules and programmable rewriting strategies. Strategies enable concise definition of traversals over trees. Stratego is used to define desugarings, transformations, optimizations, and code generation (translation to another language).

	DynSem

	The DynSem Dynamic Semantics specification language supports the definition of the execution behavior of programs by means of reduction rules that are typically used to define natural semantics or big-step operational semantics. DynSem specifications are compiled to interpreters targeting the Truffle/Graal stack.

	SPT

	The SPT testing language supports the definition of tests for all aspects of a language definition.

	ESV

	The ESV editor services language is used to configure language definitions.

A Platform for Language Engineering

Spoofax is a platform for language engineers. That is, it provides full support for software engineering of language implementations.

	Agile Language Development

	An important feature of Spoofax is its support for agile language development. The development of a language definition and testing that language definition in the generated IDE for the language under development is done in the same Eclipse instance. This enables a quick turn-around time between language development and language testing.

	IDE generation

	Spoofax generates a full fledged editor plugin from a language definition.

	API

	Spoofax does not only provide an IDE for interactively developing and using languages, it also provides a programmatic interface that enables embedding languages and their implementations directly in application code or to invoke language components from build systems or the command line.

	Bootstrapped Language Workbench

	Spoofax has been bootstrapped. That is, Spoofax is used for the definition of its own meta-languages and the workbench is the composition of plugins generated for these meta-languages.

	Continuous integration

	The Spoofax sources are continuously built on a buildfarm at TU Delft, which reports build errors to Spoofax developers and provides a complete build for various platforms of the latest version.

	Open source

	Spoofax is open source and available under the Apache 2.0 license. The sources are maintained in the MetaBorg [https://github.com/metaborg] github organization; pull requests are welcome.

A Platform for Research

Spoofax is a platform for language engineering research.
Due to its modular architecture it is easy to extend the workbench with new experimental meta-languages and tools.
For example, the current (May 2017) version comes with a new experimental parser generator in addition to the old SDF2 parser generator, and it provides a new NaBL2 static semantics specification language next to the old NaBL/TS solution.

Index

 _images/button_plus.png

_images/completion-recovery.png
form Problems {
ifl
 Gonitonal

1

#Expr) {

[form Problems {

_images/arch-external.png
Stratego runtime

™

JSGLR parser

< Spoofax Core
org.metaborg.spoofax.core

< Spoofax-meta Core

org.metaborg.spoofax.meta.core

e

!

!

MetaBorg Core

org.metaborg.core

< MetaBorg-meta Core

org.metaborg.meta.core

/

NN

]

Logging

Apache VFS

_images/button_minus.png

_images/completion_statement.png
Form Problems {

if (FExp {
Fand

#Expr == #Expr.

_images/arch-adapters.png
Cmd-line
adapter

Eclipse
plugin

|

Eclipse
meta

plugin

l

l

l

Spoofax Core
org.metaborg.spoofax.core

< Spoofax-meta Core
org.metaborg.spoofax.meta.core

!

!

MetaBorg Core

org.metaborg.core

< MetaBorg-meta Core

org.metaborg.meta.core

_images/arch-base.png
Running languages Building languages

Implementation with Spoofax Core || Spoofax-meta Core
Spoofax tools org.metaborg.spoofax.core org.metaborg.spoofax.meta.core

___________________________ il

Tool-agnostic MetaBorg Core | ' | MetaBorg-meta Core
API org.metaborg.core | org.metaborg.meta.core

_images/CompilingSDF3.png
]

Signatures

]

Pretty-
printer

]

Syntactic
Completion

]

SDF3
Normalized

_images/import_langspec.png
1y to Import

‘Eclipse project (.project) or classpath (.classpath) file,
Maven project ile (pom.xmi),
Gradle build script (~gradle).

ADnGEX O Fide path
s Zamenhon desprojecta Esperato]

> CJ Favorites
v [ldeaProjects
2

B gifgnore
[Esperantoimi
B metsborgyemi
& pomaml

_images/import_langspec_existingsources.png
1 Import Project

Create project from existing sources

O Import project rom external model

@ e
@ Gradie
m Maven

_images/empty-list.png
form Problems { [form Problems {

if @Ee {

+Question if (#Expr) { TR
+Computed y M
+Conditional 3 40w

+add
+sub
ot
+and
For
+u
+leq
+ot

#1D

_images/insert-before.png
form Problems {
11f GFExp) {
+ Question
+Computed
+Conditonal

[#1D : #Label

[form Problems {

D : #Label]

if GExpr) {

}

_images/install_plugin1.png
C——
 dopemce st (@) sow (]

Sort by: name v

N Android Support

Version: 1015

& Ant Support
» Version Control ‘Supports the development of Open
— & Bytecode Viewer Handset Alsnce Ancod spolcatons
- & Copyright
> Tools & Coverage

#& CVs Integration

44 Edlpse Integration

44 EditorConfig

44 Git Integration

& Github

Check or uncheck a plugin to enable or disable it

[Ty | pre— g———)

_images/import_langspec_projectroots.png
Source filesfor your project have been found. Please choose directories that will

be added to the project roots. These paths correspond to default (root, unnamed, top level) packages.
Note:the program will ecognize only those source files, that are located under these directoris.

CA\Users\ZamenhofdesProjects\Esperanto Spooax module
[C\Users\ZamenhofldesProjects\Esperantoleditorjava Jova

ey

_images/insert-after.png
form Problems {

[form Problems {
if (#Expr) {

iF (#Expr) {

iy 3
Question #10 : #Label
+Computed
+ Conditional

: #Label

_images/install_plugin2.png
Browse Repositories x

) (3 [CateaonzAllw]

B] Custom Plugin Repositories x

No plugin repositories configured
aatack plugin repe g

u

Aardvark.
BuLD

Accessors Plugin
TeNTION

Accurev

VES INTEGRATIO!

acaurevéideal
VCS INTEGRATIO!

L T S Y

Acelump

[ip7/denniosd.spotororg/update/nighly/spdatePluginsarmi

_images/install_plugin3.png
Browse Repositories x

(@ spoof ©) O [Repository: All] [Category: All~ |

Sertbrnzme . spoofax-intellij

i

V2.0.0-SNAPSHOT

_images/java.png
Java

JDK 7

JDK 8

Java front-end | |Java back-end

Parser

Analyzer

Java front-end | |Java back-end

Parser

Analyzer

Java 7 front-end Java 7 compiler

specification

specification

specification

Java 8 front-end Java 8 compiler

specification

_images/maven_anno_processing.png
\: type filter text 0}

» Resource
Builders
Git
Java Build Path
> Java Code Style
» Java Compiler
» Java Editor
Javadoc Location
¥ Maven
Annotation Processing
Lifecycle Mapping
Project References
Run/Debug Settings
Task Tags
» Validation

Properties for simpl.interpreter

Annotation Processing v v

Enable project specific settings Configure Workspace Settings...

Select Annotation Processing Mode

o Automatically configure JDT APT (builds faster, but outcome may differ from Maven builds)
Experimental : Delegate annotation processing to maven plugins (for maven-processor-plugin only)

Do not automatically configure/execute annotation processing from pom.xml

Other Options

Disable processing in editor

Restore Defaults Apply

Cancel

_images/newproject_langspec_newsdk.png

_images/junit_view.png
5= Outline gu JUnit 5% e S1BH @ He v= 8
Finished after 0.923 seconds
Runs: 2/2 B Errors: O B Failures: 0

v Fi-] org.metaborg.simpl.interpreter.generated.test. Testsimpl [Runner: J

v [t [0: factorial.smpl] (0.676 s)
¢|testEagerEval[O: factorial.smpl] (0.676 s)

v il [1: helloworld.smpl] (0.084 s)
¢ltestEagerEval[1: helloworld.smpl] (0.084 s)

_images/left-recursive.png
Form Problems {

if Ctrue) {

1

Ml
+0w
+add
+Sub
+And
+or
+u
+leq
+at
+0eq
+Ea

8& #Expr

orm Problems {
if (true &

1 Ml
+0iv
+Add
+Ssub.
+Not
+And
+or
+u
+Leq
+at

